Computational modelling of Silica nanoparticle formation in a flame reactor

S. Shekar, M. Sander,A. J. Smith, M. Kraft26 April, 2010

Introduction

Precursor (TEOS)

Mesoporous silica nanoparticles

- **Aim:** To answer the following questions
- •What happens in the gas-phase?
- •How do gas-phase precursors form the particles?
- •How do these particles grow?
- •How to describe the overall system from first-principles?

Product : Silica nanoparticles

Mesoporous Silica Nanoparticles: network of Si-O bonds such that Si:O = 1:2

Applications:

•Support material for functional/composite nanoparticles.

•Optics, optoelectronics, photoelectronics

Catalysis

•Bio-medical applications, drug delivery shradd

Industrial Flame Reactor

Ab initio modelling

Equilibrium Plot

Ref: W. Phadungsukanan, S. Shekar, R. Shirley, M. Sander, R. H. West, and M. Kraft. First-principles thermochemistry for silicon species in the decomposition of tetraethoxysilane. *J. Phys. Chem. A*, **113**, 9041–9049, 2009

Reaction kinetics

Equilibrium Hints towards the existence of stable

- intermediates & products.
- Intermediates Si(OH)_x(OCH₃)_{4-x} Si(OH)_y(OC₂H₅)_{4-y}
- Main Product Si(OH)₄

• Kinetics

- Reaction set generated to include all intermediates and products from equilbrium.
- Reactions obey
 Arrhenius law rate
 constant k = AT^βe^{-Ea/RT}
- Rate parameters (A, β, Ea) fitted to experimental vaues ^(a)

(a) J. Herzler, J. A. Manion, and W. Tsang. Single-Pulse Shock Tube Study of the decomposition of tetraethoxysilane and Related Compounds. *J. Phys. Chem. A*, **101**, 5500-5508, 1997

Gas-phase mechanism

Reactor Plot

Particle Model

Si(OH)₄ molecules in gas-phase undergo inception to form a dimer (-Si-O-Si). This dimer is considered to be the first particle. Particle growth then proceeds by subsequent removal of hydroxyl groups.

Particle Model

New inception and surface growth steps have been incorporated in a previously developed stochastic particle model developed by Sander et al. [1].

[1]: M. Sander, R. H. West, M. S. Celnik, and M. Kraft. A Detailed Model for the Sintering of Polydispersed Nanoparticle Agglomerates, *Aerosol Sci. Tech.*, **43**, 978-989, 2009

The Data Structure

 $P = P(p_1, p_2, \dots, p_n, \mathbf{S})$

Particle-gasphase reactions

1. Inception

2. Surface growth

The Algorithm

- 1. Set start time $t \leftarrow t_o$ and the initial system $x \leftarrow x_o$.
- 2. Calculate an exponentially distributed waiting time

$$dt = -\frac{\ln(U)}{R_{tot}}$$

where *U* is a uniformly distributed random number, $U \in (0; 1)$, and R_{tot} is the total rate of all processes (surface reaction, coagulation and inception) defined for rates R_i , $i \in \{coag, inception, surfrxn\}$

$$R_{tot} = \sum_{i=1}^{N} R_i(x, t)$$

Ref: M. Sander, R. H. West, M. S. Celnik, and M. Kraft. A Detailed Model for the Sintering of Polydispersed Nanoparticle Agglomerates, *Aerosol Sci. Tech.*, **43**, 978-989, 2009

The Algorithm

- 3. Increment time variable $t \leftarrow t + dt$.
- 4. If $t > t_{stop}$ then end.
- 5. Update the sintering level for the time *dt* for all the particles.
- 6. Choose a process *i* according to the probability:

$$P_i = \frac{R_i}{R_{tot}}$$

- Perform process *i*. 7.
- 8. Go to step 2.

Ref: M. Sander, R. H. West, M. S. Celnik, and M. Kraft. A Detailed Model for the Sintering of Polydispersed Nanoparticle Agglomerates, Aerosol Sci. Tech., 43, 978-989, 2009

Experimental Setup of Seto et al.

Ref: T. Seto, A. Hirota, T. Fujimoto, M. Shimada, and K. Okuyama. Sintering of Polydisperse Nanometer-Sized Agglomerates, *Aerosol Sci. Tech.*, **27**, 422-438, 1997

Model Validation

Ref: T. Seto, A. Hirota, T. Fujimoto, M. Shimada, and K. Okuyama. Sintering of Polydisperse Nanometer-Sized Agglomerates, *Aerosol Sci. Tech.*, **27**, 422-438, 1997

Model produced TEM-like images at 0.1 s, T = 1300 K

Overall mechanism for particle formation

GROUP

The gas-phase and particle model described above are coupled using an operator splitting technique to generate the overall model.

Conclusion

- 1. New kinetic model proposed which postulates silicic acid Si(OH)4 as the main product of TEOS decomposition.
- 2. A novel pathway proposed for the formation of silica nanoparticles via the interaction of silicic acid monomers.
- 3. Feasibility of using first-principles to gather a deeper understanding of complex particle synthesis processes.

Acknowledgements

Thank you!

